46 research outputs found

    Bose-Einstein Condensation in a Surface Micro Trap

    Full text link
    Bose-Einstein condensation has been achieved in a magnetic surface micro trap with 4x10^5 87Rb atoms. The strongly anisotropic trapping potential is generated by a microstructure which consists of microfabricated linear copper conductors at a width ranging from 3 to 30 micrometer. After loading a high number of atoms from a pulsed thermal source directly into a magneto-optical trap (MOT) the magnetically stored atoms are transferred into the micro trap by adiabatic transformation of the trapping potential. The complete in vacuo trap design is compatible with ultrahigh vacuum below 2x10^(-11) mbar.Comment: 4 pages, 4 figure

    Combined chips for atom-optics

    Get PDF
    We present experiments with Bose-Einstein condensates on a combined atom chip. The combined structure consists of a large-scale "carrier chip" and smaller "atom-optics chips", containing micron-sized elements. This allows us to work with condensates very close to chip surfaces without suffering from fragmentation or losses due to thermally driven spin flips. Precise three-dimensional positioning and transport with constant trap frequencies are described. Bose-Einstein condensates were manipulated with submicron accuracy above atom-optics chips. As an application of atom chips, a direction sensitive magnetic field microscope is demonstrated.Comment: 9 pages, 9 figure

    Microelectromagnets for Trapping and Manipulating Ultracold Atomic Quantum Gases

    Full text link
    We describe the production and characterization of microelectromagnets made for trapping and manipulating atomic ensembles. The devices consist of 7 fabricated parallel copper conductors 3 micrometer thick, 25mm long, with widths ranging from 3 to 30 micrometer, and are produced by electroplating a sapphire substrate. Maximum current densities in the wires up to 6.5 * 10^6 A / cm^2 are achieved in continuous mode operation. The device operates successfully at a base pressure of 10^-11 mbar. The microstructures permit the realization of a variety of magnetic field configurations, and hence provide enormous flexibility for controlling the motion and the shape of Bose-Einstein condensates.Comment: 4 pages, 3 figure

    Bose-Einstein Condensates in Magnetic Waveguides

    Full text link
    In this article, we describe an experimental system for generating Bose-Einstein condensates and controlling the shape and motion of the condensate by using miniaturised magnetic potentials. In particular, we describe the magnetic trap setup, the vacuum system, the use of dispenser sources for loading a high number of atoms into the magneto-optical trap, the magnetic transfer of atoms into the microtrap, and the experimental cycle for generating Bose-Einstein condensates. We present first results on outcoupling of condensates into a magnetic waveguide and discuss influences of the trap surface on the ultracold ensembles.Comment: 8 pages, 9 figure

    A fundamental limit for integrated atom optics with Bose-Einstein condensates

    Full text link
    The dynamical response of an atomic Bose-Einstein condensate manipulated by an integrated atom optics device such as a microtrap or a microfabricated waveguide is studied. We show that when the miniaturization of the device enforces a sufficiently high condensate density, three-body interactions lead to a spatial modulational instability that results in a fundamental limit on the coherent manipulation of Bose-Einstein condensates.Comment: 6 pages, 3 figure

    An optical lattice on an atom chip

    Full text link
    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retro-reflected using the atom chip surface as a high-quality mirror, generating a vertical array of purely optical oblate traps. We load thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime where the thermal energy is smaller than a quantum of transverse excitation. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice.Comment: 3 pages, 2 figure

    Loading of a Rb magneto-optic trap from a getter source

    Get PDF
    We study the properties of a Rb magneto-optic trap loaded from a commercial getter source which provides a large flux of atoms for the trap along with the capability of rapid turn-off necessary for obtaining long trap lifetimes. We have studied the trap loading at two different values of background pressure to determine the cross-section for Rb--N2_2 collisions to be 3.5(4)x10^{-14} cm^2 and that for Rb--Rb collisions to be of order 3x10^{-13} cm^2. At a background pressure of 1.3x10^{-9} torr, we load more than 10^8 atoms into the trap with a time constant of 3.3 s. The 1/e lifetime of trapped atoms is 13 s limited only by background collisions.Comment: 5 pages, 5 figure

    Transport of Bose-Einstein Condensates with Optical Tweezers

    Full text link
    We have transported gaseous Bose-Einstein condensates over distances up to 44 cm. This was accomplished by trapping the condensate in the focus of an infrared laser and translating the location of the laser focus with controlled acceleration. Condensates of order 1 million atoms were moved into an auxiliary chamber and loaded into a magnetic trap formed by a Z-shaped wire. This transport technique avoids the optical and mechanical access constraints of conventional condensate experiments and creates many new scientific opportunities.Comment: 5 pages, 3 figure
    corecore